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ABSTRACT 

The completeness .of the Cole-Cole diagram in the analysis of 

dielectric relaxation is proved by showing explicitly that a semi- 

circle in the Cole-Cole diagram corresponds uniquely to a Debye 

relaxation function. A method is established to distinguish a con- 

tinuous distribution of relaxation times from a single relaxation 

time. 
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I. INTRODUCTION 

In the frequency domain, the relaxation function is a complex function of the 
frequency, the real component is called the dispersion and the imaginary com- 
ponent the absorption. In the analysis of the dielectric relaxation in the frequency 
domain, a very convenient representation, in terms of the Argand diagram of the 
complex plane of the relaxation function, was introduced by Cole and Cole. The 
usefulness of this representation is found also in the analysis of other kinds of 
relaxations, such as that of viscoelastics,* paramagnetics,3 plasmas and semi- 
conductors. 4 In spite of this universality, the mathematical foundation of this 
representation does not seem to have been established until recently.5 

While the approach of Ref. 5 is of a very general and formal nature, in the 
present paper, we will treat a special, but physically a better understood case: a 
system of relaxation which obeys linear kinetics, such as Debye relaxation in 
dielectrics,6 Casimir and Du Pre relaxation in para magnetic^,^ and Lorentz 
relaxation in plasma.7 For such a system, the Argand diagram shows a semi- 
circle. The mathematical proof of this conclusion is of a simple algebraic nature 
and can be found in the literature.8 But this constitutes only a proof of the 
sufficient condition. In part II of the present paper, we would like to prove the 
necessary condition. Therefore, we establish the completeness of the semi- 
circle in the Argand diagram representation. We will use the familiar symbols 
of dielectric relaxation, in accordance with the title of our paper, but a general 
implication is obvious. 
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Because of the method of proof we introduced in the preceeding problem, we 
can establish a criterion to distinguish whether a relaxation function has a single 
relaxation time, or a continuous distribution of relaxation times. This we will 
discuss in Part IU. 

I . .  

XI. COMPLETENESS OF THE COLE-COLE DIAGRAM 

Elsewheres we have proved, based on an invariance of the Kronig-Kramers 
relation, that: an Argand diagram (or the equivalent Cole-Cole diagram in the 
dielectrics) determines completely, up to an undeterminable scale factor, the 
relaxation function. In the present work, we will prove explicitly that a semi- 
circle in the Cole-Cole diagram uniquely implies that the relaxation function is 
that of Debye. 

We start from the following equation, 

where g(7) is a distribution function of the relaxation time r, and the other sym- 
bols have the usual meaning. 

We will use the following reality conditions: 

2. [ g(7) d7 = 1, 

3. w and 7 are real and span from 0 tn OD. 

The semicircle in the Cole-Cole diagram in the complex modulus form, is 

2 



From Eq. (l), therefore, 

After a rationalization, 

+ complex conjugate g ( r l )  g ( r 2 )  drl  d r 2  1 

= M' +N2,  (4) 

with M referring to the first bracket and N to the second bracket. They are func- 
tions of W. 

We observe the following properties of M: 

1. M(o) = 1, M(m) = -1. This is based on the property 2 of g ( r ) ,  

2. M is a monotonically decreasing function of W. This is proved by showing 
. '  

that for two values of w, w1 and w 2 ,  
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Since the integrand is positive definite 

M(02)  - M(o,) < 0 if o2 > o1 (6) 

From these properties of M, we conclude that M has once and only once a value 
zero at some frequency, say, oo. 

Now, trivially, g(7) cannot be zero everywhere. If g(7) is non-vanishing at 
an arbitrary interval of 7, with 71 < 7 < 72 , then, 

because (1 - w ~ ) ~ / ( 1  t 9 T ~ )  2 0. Therefore, N < 1, irrespective of the values 
of w. Now, at o0, the condition given by Eq. (4) clearly cannot be satisfied. There- 
fore, g(7) cannot be non-vanishing at any interval. Therefore, g(7) can be non- 
vanishing only at singular points. This constitutes the proof of g(7) as a 6- 
function. 

Substituting the above result, by writing 

g ( 7 )  = 8 ( 7  - T ~ ) ,  (8) 

into Eq. (l), we then obtain the familiar Debye relaxation function, 

€0  - ‘rn 
E *  = E ,  

1 t iw+rO 

This completes our proof. 

III. DISTRIBUTION FUNCTION OF REL XATION TIMES 

(9) 

In this part, we will discuss a method to identify two types of distribution 
functions. The mathematical basis of the method is very simple and is contained 
implicitly in the discussion of Part II. However, in order to attain an analytical 
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completeness, we make here a formal elaboration of these distribution functions. 
These two types do not include all possible mathematical distribution functions, 
nor all dispersion functions one encounters in the experiment, but they include 
probably all the mathematical form of distribution functions discussed in the 
physical literature on relaxation. 

In the first type, g(7) is zero everywhere except at one value of 7 = 70 , and 
has the property 

f(7) g(7 - 7 )  d7 = f ( ~ ~ ) ,  I 
that is, g(7) is a Dirac 6 -function. This Qpe of g(7) has dready been discussed 
inPartII .  

In the second type, g(7) is a continuous, unimodal distribution function of 7 .  

By unimodal we mean that g(7) has one and only one maximum. 9 This type of 
g ( 7 )  is represented by a vast number of dispersion functions in the literature, 
for example, Cole and Cole relaxation in dielectrics" and Weichert relaxation 
in viscoelasticity.10 

Sometimes in mathematical statistics, a null-function type of distribution 
can be found. This function is non-zero only at some discrete points of 7, and 
the integration of such a g(7), as indicated in Eq. (lo), is zero. We are not 
aware of the physical application of such a function in the relaxation dispersion, 
and will nct discuss it. 

It is possible to have physical systems where g(7) is a linear combination of 
functions of the two types we stated in the beginning. A very particular case 
would be that all 70 has the same value. In this case, if g(7) consists of a 
combination of pure first type or pure second type of distribution, one can not 
distinguish such a resultant distribution function from a single first or  second 
type of distribution function respectively. An interesting case is that of g(7) 
consisting of a linear combination of mixed types of distribution functions, all 
with same T ~ .  Such a function, to our knowledge, has been discussed only in 
quantum field theory," but not in other branches of physics, and we wi l l  not 
make any further discussions. 

It remains for us to discuss the case of distribution function which is a 
linear combination of the two types of distribution function, each component of 
which has a value of T,, different from all other -rO. In principle, then one can 
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separate the corresponding dispersion function into single components for each 
distribution function. l2 After the problem of separation is solved, the results 
which wil l  be given here can be applied to each component. 

Now we will discuss a method to identify the two types of specific distribution 
functions from the dispersion data derived from the frequency domain. In an 
investigation of the characteristics of dispersion in the frequency domain, the 
straightforward process is to represent the dispersion quantities in their frequency 
spectra. But the shape of the spectra usually cannot be described in terms of 
some simple geometrical form as to provide a direct identification without an 
elaborate analysis. On the otherhand, we found that Cole-Cole diagram provide 
a convenient means to identify different types of g ( 7 ) .  This is based on the 
following consideration: 

Always with the restriction of the special types of distribution function as 
specified in the beginning of this Part, from the result of Part II, we have proved 
that an Argand diagram of E? (w)  is a semi-circle with the center at the real 
axis if and only if g(7)  is a 8-function. Therefore, if the Argand diagram is not 
a semi-circle, g ( 7 )  is a continuous distribution function. 

CONCLUSION 

In this paper, we proved that a semi-circle in the Cole-Cole diagram implies 
uniquely the relaxation function is that of Debye. Although the inverse statement 
was well known, as it can be proved readily by a simple algebraic method, the 
proof of the present problem requires some novel procedures as it has to deal 
with a non-analytic, singular function. 

As a corollary, the above result is used to establish the criterion of recogniz- 
ing a continuous distribution of relaxation times. 

The author is greatly indebted to Dr. M. Newman of the National Bureau of 
Standards for his contribution to the mathematical results. 
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